A228 Iteration

Q1.

(a) Show that the equation $x^3 + 4x = 1$ has a solution between x = 0 and x = 1

(2)

(b) Show that the equation $x^3 + 4x = 1$ can be arranged to give $x = \frac{1}{4} - \frac{x^3}{4}$

(1)

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{1}{4} - \frac{x_n^3}{4}$ twice, to find an estimate for the solution of $x^3 + 4x = 1$

(3)

(Total for question = 6 marks)

_	\mathbf{a}
	•

(a) Show that the equation $x^3 - 3x^2 + 3 = 0$ has a solution between x = 2 and x = 3

(b) Show that the equation $x^3 - 3x^2 + 3 = 0$ can be rearranged to give $x = \sqrt[3]{3x^2 - 3}$

(c) Starting with $x_0 = 2$, use the iteration formula $x_{n+1} = \sqrt[3]{3x_n^2 - 3}$ to find the value of x_2 Give your answer correct to 3 decimal places.

.....

(Total for question = 6 marks)

(3)

(2)

_	_
\mathbf{n}	•
u	ъ.

At the start of year n , the quantity of a radioactive metal is P_n At the start of the following year, the quantity of the same metal is given by
$P_{n+1} = 0.87 P_n$
At the start of 2016 there were 30 grams of the metal.
What will be the quantity of the metal at the start of 2019? Give your answer to the nearest gram.

..... grams

(Total for question = 3 marks)

Q4.

(a)	Show that the	equation $3x^2$	$2 - x^3 + 3 =$	0 can be	rearranged to	o aive
(a)	SHOW that the	Eduation 3x	- x + 3 =	U Call De	rearranueu u	J UIVE

$$x = 3 + \frac{3}{x^2}$$

(2)

(b) Using

$$x_{n+1} = 3 + \frac{3}{x_n^2}$$
 with $x_0 = 3.2$,

find the values of x_1 , x_2 and x_3

(3)

(c) Explain what the values of x_1 , x_2 and x_3 represent.

(1)

(Total for question is 6 marks)

~	

(a) Show that the equation $2x^3 + 4x = 3$ has a solution between 0 and 1

(b) Show that $2x^3 + 4x = 3$ can be rearranged to give $x = \frac{3}{4} - \frac{x^3}{2}$

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{3}{4} - \frac{x_n^3}{2}$ times to find an estimate for the solution to $2x^3 + 4x = 3$

.....

(Total for question = 6 marks)

(1)

(3)

(a) Show that the equation $x^3 + 5x - 4 = 0$ has a solution between x = 0 and x = 1

(2)

(b) Show that the equation $x^3 + 5x - 4 = 0$ can be arranged to give

(2)

(c) Starting with $x_0 = 0$, use the iteration formula the solution of $x^3 + 5x - 4 = 0$

$$x_{n+1} = \frac{4}{x_n^2 + 5}$$
 twice, to find an estimate for

(3)

(Total for question = 7 marks)

Q7.	
The number of slugs in a garden t days $p_0 = 100$ $p_{t+1} = 1.06p_t$	ays from now is p_t where
Work out the number of slugs in the	garden 3 days from now.
	(Total for question = 3 marks)
Q8.	(Total for question = 3 marks)
The number of bees in a beehive at t	
The number of bees in a beehive at t	the start of year n is P_n .
The number of bees in a beehive at t	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$
The number of bees in a beehive at the number of bees in the beehive a	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$ bees in the beehive.
The number of bees in a beehive at the number of bees in the beehive at the At the start of 2015 there were 9500	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$ bees in the beehive.
The number of bees in a beehive at the number of bees in the beehive at the At the start of 2015 there were 9500	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$ bees in the beehive.
The number of bees in a beehive at the number of bees in the beehive at the At the start of 2015 there were 9500	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$ bees in the beehive.
The number of bees in a beehive at the number of bees in the beehive at the At the start of 2015 there were 9500	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$ bees in the beehive.
The number of bees in a beehive at the number of bees in the beehive at the At the start of 2015 there were 9500	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$ bees in the beehive.
The number of bees in a beehive at the number of bees in the beehive at the At the start of 2015 there were 9500	the start of year n is P_n . It the start of the following year is given by $P_{n+1} = 1.05(P_n - 250)$ bees in the beehive.

(Total for question is 3 marks)

	^
()	u

(a) Show that the equation $x^3 + 7x - 5 = 0$ has a solution between x = 0 and x = 1

(b) Show that the equation $x^3 + 7x - 5 = 0$ can be arrange to give $x = \frac{5}{x^2 + 7}$

(c) Starting with $x_0 = 1$, use the iteration formula $x_{n+1} = \frac{5}{x_n^2 + 7}$ three times to find

.....(3)

(d) By substituting your answer to part (c) into $x^3 + 7x - 5$, comment on the accuracy of your estimate for the solution to $x^3 + 7x - 5 = 0$

(Total for question = 9 marks)

(2)

(2)

an estimate for the solution of $x^3 + 7x - 5 = 0$

Q10.

Using $x_{n+1} = -2 - \frac{4}{x_n^2}$ with $x_0 = -2.5$

(a) find the values of x_1 , x_2 and x_3

<i>x</i> ₁ =	
<i>X</i> ₂ =	
<i>x</i> ₃ =	
	(3)

(b) Explain the relationship between the values of x_1 , x_2 and x_3 and the equation $x^3 + 2x^2 + 4 = 0$

(2)

(Total for question = 5 marks)