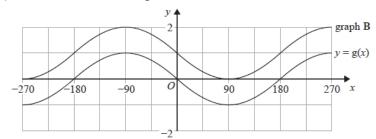

A258 Transformation of functions

Q1.

The graph of y = f(x) is shown on the grid.

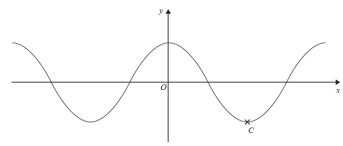


Graph **A** is a reflection of the graph of y = f(x).

(a) Write down the equation of graph A.

(1)

The graph of y = g(x) is shown on the grid.

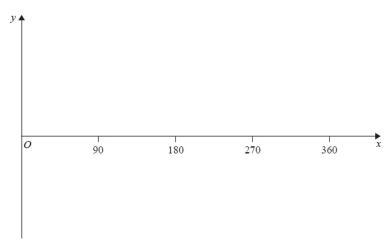

Graph **B** is a translation of y = g(x).

(b) Write down the equation of graph B.

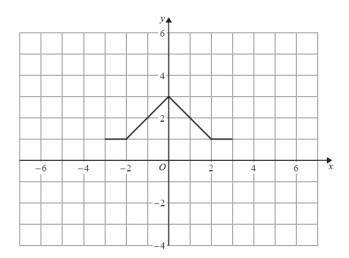
.....

(1)

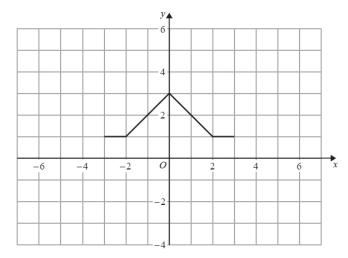
The graph of $y = \cos x^{\circ}$ is shown.


(c) Write down the coordinates of the point marked C.

(......)

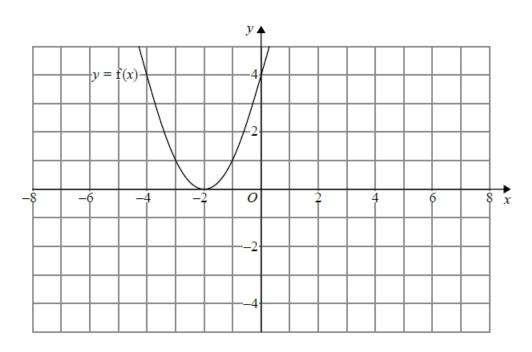

(1)

(Total for question = 3 marks)


(a) Sketch the graph of $y = \cos x^0$ for $0 \le x \le 360$

- (b) The graph of y = f(x) is shown on both grids below.
 - (i) On this grid, draw the graph of y = 2f(x)

(ii) On the grid below, draw the graph of y = f(x - 3)


(2)

(2)

(Total for question = 4 marks)

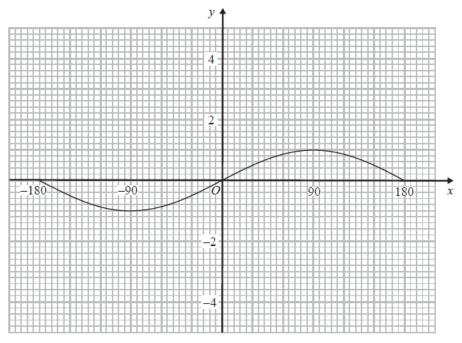
Q3.

The graph of y = f(x) is shown on both grids below.

(a) On the grid above, sketch the graph of y = f(-x)

y = f(x) -8 -6 -4 -2 0 2 4 6 8 x

(b) On this grid, sketch the graph of y = -f(x) + 3


(1)

(1)

(Total for question = 2 marks)

Q4.

Here is the graph of $y = \sin x^{\circ}$ for $-180 \le x \le 180$

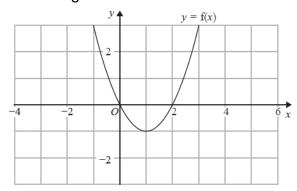
On the grid, sketch the graph of $y = \sin x^{\circ} - 2$ for $-180 \le x \le 180$

(Total for question = 2 marks)

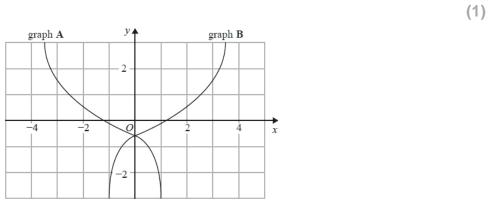
Q5.

The table shows some values of x and y that satisfy the equation $y = a\cos x^{\circ} + b$

x	0	30	60	90	120	150	180
y	3	$1 + \sqrt{3}$	2	1	0	$1-\sqrt{3}$	-1


Find the value of y when x = 45

.....


(Total for question = 4 marks)

Q6.

The graph of y = f(x) is shown on the grid below.

(a) On the grid above, sketch the graph of y = f(x - 2)

On the grid, graph A has been reflected to give graph B.

The equation of graph **A** is y = g(x)

(b) Write down the equation of graph **B**.

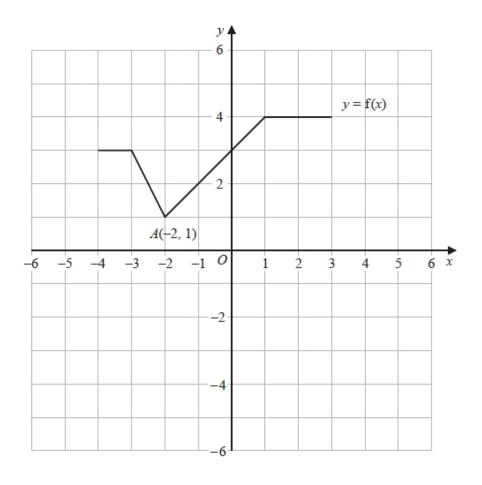
(1)

(Total for question = 2 marks)

Q7.

The graph of the curve C with equation y = f(x) is transformed to give the graph of the curve S with equation y = f(-x) - 3

The point on C with coordinates (7, 2) is mapped to the point Q on S.


Find the coordinates of Q.

(...... ,)

(Total for question = 2 marks)

Q8.

The graph of y = f(x) is shown on the grid.

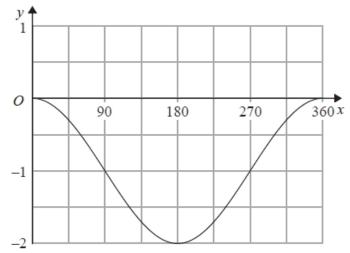
(a) On the grid, draw the graph with equation y = f(x + 1) - 3

(2)

Point A(-2, 1) lies on the graph of y = f(x).

When the graph of y = f(x) is transformed to the graph with equation y = f(-x), point A is mapped to point B.

(b) Write down the coordinates of point *B*.


(......)

(1)

(Total for question = 3 marks)

Q9.

Here is a sketch of the curve $y = \sin(x + a)^{\circ} + b$

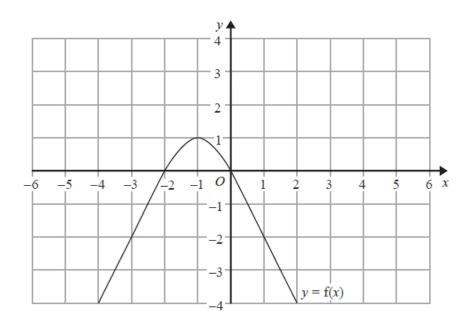
Given that 0 < a < 360 find the value of a and the value of b.

2	_					
а	_	 	 	 	 	

(Total for question = 2 marks)

Q10.

The graph of y = f(x) is transformed to give the graph of y = -f(x + 3)The point A on the graph of y = f(x) is mapped to the point P on the graph of y = -f(x + 3)


The coordinates of point *A* are (9, 1) Find the coordinates of point *P*.

(.....)

(Total for question is 2 marks)

Q11.

The graph of y = f(x) is shown on the grid.

(a) On the grid, sketch the graph of y = f(x - 1)

The graph of y = f(x) has a turning point at the point (-1, 1)

(b) Write down the coordinates of the turning point of the graph of y = f(-x) + 2

(...... ,)

(1)

(Total for question = 2 marks)