N298 Surds

Q1.

(a) Express $5\sqrt{27}$ in the form $n\sqrt{3}$, where n is a positive integer.

(2)

(b) Rationalise the denominator of $\frac{21}{\sqrt{3}}$

(2)

(Total for Question is 4 marks)

Q2.

Show that
$$\frac{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{\sqrt{13}}$$
 simplifies to $\sqrt{13}$

Q3.	
Simplify fully $(\sqrt{a} + \sqrt{4b})(\sqrt{a} - 2\sqrt{b})$	
	(Total for question = 3 marks)
	(Total for quodition = 0 marks)
	(Total for quodion – o marko)
Q4.	
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers.
Q4. $\left(a+\sqrt{8}\right)^2$ can be written in the form $c+d\sqrt{2}$, where a , c ar Find, in terms of a , an expression for c and an expression	nd <i>d</i> are integers.
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers.
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers.
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers.
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers.
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers.
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers. on for <i>d</i> .
$(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where a , c are	nd <i>d</i> are integers.

Q5.

Show that
$$\frac{3+\sqrt{2}}{5+\sqrt{8}}$$
 can be written as $\frac{11-\sqrt{2}}{17}$

(Total for question = 3 marks)


Q6.

Show that
$$\frac{6-\sqrt{8}}{\sqrt{2}-1}$$
 can be written in the form $a+b\sqrt{2}$ where a and b are integers.

Q7.

$$\frac{\sqrt{3}}{5} + \frac{2}{\sqrt{3}} = a\sqrt{3}$$
, where *a* is a fraction

Find the value of a.

(Total for question = 3 marks)

Q8.

Show that
$$\frac{\frac{4}{\frac{1}{\sqrt{3}} + \sqrt{3}}}{\sqrt{3}}$$
 can be written as $\sqrt{3}$

Q9.

$$\frac{1}{1+\frac{1}{\sqrt{2}}}$$
Show that $\frac{1}{\sqrt{2}}$ can be written as $2-\sqrt{2}$

Q10.

ABD is a right angled triangle.

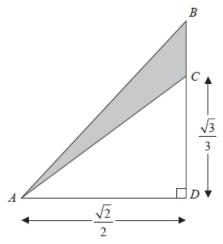
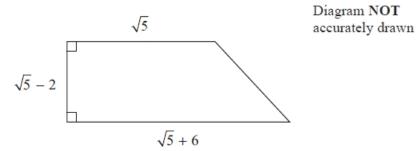


Diagram NOT accurately drawn

All measurements are given in centimetres.

C is the point on BD such that $CD = \frac{\sqrt{3}}{3}$


$$AD = BD = \frac{\sqrt{2}}{2}$$

Work out the exact area, in cm², of the shaded region.

...... cm²

Q11.

Here is a trapezium.

All measurements shown are in centimetres.

Work out the area of the trapezium.

Give your answer in cm² in the form $a\sqrt{5} + b$ where a and b are integers.

cm²

Q12.

* The diagram shows the triangle *PQR*.

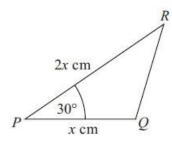


Diagram NOT accurately drawn

$$PQ = x \text{ cm}$$

 $PR = 2x \text{ cm}$
Angle $QPR = 30^{\circ}$

The area of triangle $PQR = A \text{ cm}^2$

Show that
$$x = \sqrt{2A}$$

Q13.

Q14.

S is a geometric sequence.

(a) Given that $(\sqrt{x} - 1)$, 1 and $(\sqrt{x} + 1)$ are the first three terms of S, find the value of x. You must show all your working.

.....

(3)

(b) Show that the 5th term of S is $7 + 5\sqrt{2}$

(2)

* The diagram shows a triangle *DEF* inside a rectangle *ABCD*.

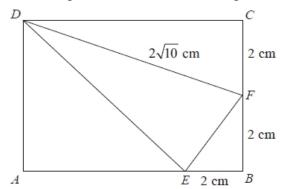


Diagram NOT accurately drawn

Show that the area of triangle *DEF* is 8 cm². You must show all your working.